

Introduction to Ductile Iron

Material Overview Corrosion Performance Transmission Applications

David Folk, PE – Engineer V EPRI Fall Task Force August 21st, 2023

Image: margin base of the second s

Presentation Contents

History & Applications

Ductile Iron – History & Applications

Creation

- During WW2, civilian shortages of chromium drove the need to find alternatives for wear-resistant iron
- Keith Millis of the International Nickel Co. is credited with discovering a magnesium alloy of iron resulting in a spheroidal graphite structure

Keith D. Millis from rpi.edu HOF

Adoption

 Since 1955, pipe industry standard for water and wastewater systems

 Manufacturing of complex shapes for the agricultural and automotive industry

Transmission

- McWane Poles founded in 2008 creating ductile iron poles for the utility industry
- Developed under the McWane family of companies, traditionally focused on iron piping

Material Overview

Material Overview

Cast Iron

Ductile Iron

Carbon Steel

- Graphite exists as flakes
- Low ductility
- Brittle

- Invented in 1943
- Addition of magnesium causes graphite to spheroidize
- Higher ductility and tensile strength than cast iron

- Much lower carbon content than cast/ductile iron
- Improved ductility, toughness and strength

EPC

Material Overview

	Cast Iron ASTM A48 CI 40	Ductile Iron Per McWane Poles *Per DI Tension Gr 65-45-12	Carbon Steel ASTM A572 Gr 65
Density (pcf)	450	440	490
Modulus of Elasticity (ksi)	16000-20000	24000	29000
Hardness, Brinell	183-234	167*	159
Tensile Yield Strength (ksi)	N/A	42	65
Tensile Ultimate Strength (ksi)	40	60	80
Carbon Content	3.25-3.5%	3.0-3.8%*	≤ 0.26%
Iron Content	91.9-94.2%	90.7-94.2%*	≥ 97.9%

- Increased carbon content of ductile iron relative to steel improves corrosion resistance
- EPRI deliverable "Summary Report for Evaluations of Alternate Grounding Materials" (PID 3002020119) released in 2020 addresses this.
- Report presents high-silicon cast iron as an alternative grounding material
- Desired grounding material properties include low corrosion rate and low cost

EPRI

 Laboratory tests were set up comparing the corrosion rates of different grounding materials

Corrosion Rate for Different Materials Exposed to Soil in Lab – Test #3

Material	Current μA	Potential V	Corrosion Rate (Calculated) mils per year
High Silicon Cast Iron	0.34	-0.13	0.14
Steel	7.17	-0.70	1.44
Zinc	7.90	-1.07	2.02

- A field test was conducted measuring corrosion current using a Zero Resistance Ammeter
- Comparison made between a HSCI and copper grounding system

Field Corrosion Rate Measurements Between Buried Anode and Steel Pole– Test #5

Material	Current μA	Approx. Corrected Current μA
High Silicon Cast Iron	665 - 1220	665 - 1220
Copper	2401 - 3903	1201 - 1952

Coating Evaluation

Coating Evaluation

 McWane Poles applies groundline level coating for additional protection

- In 2019, tests were conducted by EPRI on Induron Permasafe[™] 100 coating from McWane Poles
 - Amine-cured epoxy resin
 - Can be applied to steel, non-ferrous metals, and concrete
 - Best for immersion environments

Thickness, Filler Material, Test Sample Flaws Metallography ASTM E3-01 Electron Endosmosis, Adherence Adhesion ASTM D 4541-02	Thickness, Filler Material, Test Sample Flaws	Metallography	ASTM E3-01	
Electron Endosmosis, Adherence Adhesion ASTM D 4541-02	Electron Endocracic Adhoronco			
,	Electron Endosmosis, Adherence	Adhesion	ASTM D 4541-02	
Cathodic Disbondment Cathodic ASTM G8 (non-conductive)	Cathodic Disbondment	Cathodic	ASTM G8 (non-conductive)	
Disbondment ASTM D714-02 (conductive)		Disbondment	ASTM D714-02 (conductive)	
Impact ASTM D 2794		Impact	ASTM D 2794	
Resistance to Soil Stress Bend ASTM D 790	Resistance to Soil Stress	Bend	ASTM D 790	
Chipping Resistance ASTM D3170/D3170M-14		Chipping Resistance	ASTM D3170/D3170M-14	
Undercutting Scribe/Creep ASTM D1654-92	Undercutting	Scribe/Creep	ASTM D1654-92	
Inhibition, Adherence, Moisture Vapor Transfer, Ionic Passage, Biological Damage EIS ASTM G106-89	nhibition, Adherence, Moisture Vapor Transfer, Ionic Passage, Biological Damage	EIS	ASTM G106-89	
Color ASTM D 2244-05	Anno-10100	Color	ASTM D 2244-05	
Gloss ASTM D 523 (modified)	чреалансе	Gloss	ASTM D 523 (modified)	

Coating Evaluation

- 1200 hours hot water immersion [ASTM D870-02]
- 1200 hours salt fog [CCT-IV]
- 1200 hours UV exposure [ASTM G154-06]

Cyclic Salt Spray Chamber

Hot Water Immersion

UV Test

Coating Evaluation Impact Test

Shows the durability of the coating during rapid deformation from a 2-pound weight.

Rating	Performance Criteria
Excellent	No cracking or exposed sub-layers.
Good	Minor cracking in coating, but no substrate exposed.
Fair	Minor cracking and substrate visible; OR Major cracking but no substrate exposed.
Poor	Major cracking/loss of coating and substrate visible.

Aging Protocol	Drop Height (in)	Degree of Cracking	Substrate Exposed?	Rating
Baseline	24	Major	Yes	Poor
UV	24	Minor	Yes	Fair
Salt Spray	24	Major	Yes	Poor
Immersion	24	Major	Yes	Poor

Baseline

Immersion

Coating Evaluation **Cathodic Disbondment**

Measures how the coating bonding can handle electrical stresses.

Rating	Performance Criteria
Excellent	No disbonded coating evident
Good	25% or less of exposed area disbonded between/within layers (not to substrate)
Fair	Greater than 25% of exposed area disbonded between/within layers (not to substrate)
Poor	Any disbonding to substrate

Aging Protocol	Area Disbonded (%)	To Substrate?	Rating
Baseline	80%	No	Fair
UV	25%	No	Good
Salt Spray	50%	No	Fair
Immersion	50%	No	Fair

Baseline

17

Coating Evaluation Summary

Aging Protocol	Gloss	Color	Scribe/Creep	Pull-off	Impact (24")	Impact (48")	Chipping	Cathodic Disbondment
Baseline	Х	Х	Х	Е	Р	Р	F	F
UV	Р	G	E	Е	F	Р	F	G
Salt Spray	Р	E	Р	E	Р	Р	Р	F
Immersion	E	E	E	Е	Р	Р	Х	F

Disbondment of painted on coating

Transmission Application Summary

20

Key Takeaways

Ductile iron has a long history, but less so for transmission applications

5

3

Ductile iron is currently targeted towards the low transmission voltage range (<200kV)</p>

EPRI is incorporating ductile iron research into P35.005 starting in 2024

Together...Shaping the Future of Energy®